Reduced nonspecific adsorption on covalently immobilized protein surfaces using poly(ethylene oxide) containing blocking agents.
نویسندگان
چکیده
In a number of applications, e.g. DNA/protein micro-array technology, enzyme-linked immunosorbent assay (ELISA) technology or surface plasmon resonance (SPR) technology, the covalent coupling of proteins to surfaces is required. Following the covalent coupling of proteins, the remaining reactive groups should be blocked in order to avoid covalent binding of the analyte to the reactive surface. To this end, preferably blocking agents containing groups that avoid nonspecific adsorption should be used. These blocking agents are typically ethanolamine and cysteine for protein coupling via amino groups and thiol groups, respectively. This report presents novel blocking agents containing poly(ethylene oxide) (PEO) groups. These blocking agents show enhanced qualities to avoid nonspecific adsorption and can therefore have advantages in versatile protein-surface technologies.
منابع مشابه
Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces.
Protein patterning was carried out using a simple procedure based on photolithography wherein the protein was not subjected to UV irradiation and high temperatures or contacted with denaturing solvents or strongly acidic or basic solutions. Self-assembled monolayers of poly(ethylene glycol) (PEG) on silicon surfaces were exposed to oxygen plasma through a patterned photoresist. The etched regio...
متن کاملSulfobetaine-terminated PEG improves the qualities of an immunosensing surface.
Poly(ethylene glycol) (PEG) possessing a sulfobetaine (SB) moiety at one end and a pentaethylenehexamine (N6) at the other end (SB-PEG-N6) was newly synthesized as a blocking agent for immunosensing surfaces. The N6 moiety strongly coordinates on gold surfaces, facilitating the tethering of the PEG chain to the sensor chip surface, and leaves the SB moiety free. Non-specific adsorption of bovin...
متن کاملProtein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA.
In the present study, we have utilized X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (ELM), and optical waveguide lightmode spectroscopy (OWLS) to examine the surface adsorption and protein resistance behavior of bio-inspired polymers consisting of poly(ethylene glycol) (PEG) conjugated to peptide mimics of mussel adhesive proteins. Peptides containing up to three residues ...
متن کاملImmobilization of RNase S-Peptide on a single-stranded DNA-fixed gold surface and effective masking of its surface by an acridinyl poly(ethylene glycol).
Oligonucleotide-peptide conjugate was synthesized by coupling of RNase S-peptide to a 24-mer single-stranded DNA (ssDNA) oligonucleotide to be immobilized on its complementary ssDNA oligonucleotide-fixed gold surface of sensor chip or electrode. Immobilization of on the ssDNA-fixed gold surface through DNA duplex formation was confirmed by quartz crystal microbalance (QCM) and electrochemical m...
متن کاملImaging the binding ability of proteins immobilized on surfaces with different orientations by using liquid crystals.
We report an investigation of the binding ability of a protein immobilized on surfaces with different orientations but in identical interfacial microenvironments. The surfaces present mixed self-assembled monolayers (SAMs) of 11-[19-carboxymethylhexa(ethylene glycol)]undecyl-1-thiol, 1, and 11-tetra(ethylene glycol) undecyl-1-thiol, 2. Whereas 2 is used to define an interfacial microenvironment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biochemical and biophysical methods
دوره 58 1 شماره
صفحات -
تاریخ انتشار 2004